Agent - Query
Streaming
When streaming is enabled, the endpoint will emit events “answer” (answer of the model) and “endpoint_response” (full response of the endpoint)
import {
EventStreamContentType,
fetchEventSource,
} from '@microsoft/fetch-event-source';
let buffer = '';
let bufferEndpointResponse = '';
const ctrl = new AbortController();
await fetchEventSource(queryAgentURL, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
signal: ctrl.signal,
body: JSON.stringify({
streaming: true,
query,
conversationId,
visitorId,
}),
async onopen(response) {
if (response.status === 402) {
throw new ApiError(ApiErrorType.USAGE_LIMIT);
}
},
onmessage: (event) => {
if (event.data === '[DONE]') {
// End of stream
ctrl.abort();
try {
const { sources, conversationId, visitorId } = JSON.parse(
bufferEndpointResponse
) as ChatResponse;
} catch {}
} else if (event.data?.startsWith('[ERROR]')) {
// ...
} else if (event.event === "endpoint_response") {
bufferEndpointResponse += event.data;
} else if (event.event === "answer") {
buffer += event.data;
// ...
}
},
});
Authorizations
Bearer authentication header of the form Bearer <token>
, where <token>
is your auth token.
Path Parameters
ID of the agent
Body
This is the query you want to ask your agent.
ID of the conversation (If not provided a new conversation is created)
ID of the participant that's sending the query (If not provided a new ID is created)
Temperature of the model (min 0.0, max 1.0)
Enable streaming
Override agent model
gpt_4_o
, gpt_4o_medium
, gpt_4o_extended
, gpt_4o_mini
, gpt_4o_mini_medium
, gpt_4o_mini_extended
, gpt_o1
, gpt_o1_mini
, gpt_o1_mini_medium
, gemini_pro
, gemini_pro_vision
, gemini_pro_1_5
, gemini_flash_1_5
, gemma_2_9b
, gemma_2_27b
, llama_3_8b_instruct
, llama_3_70b_instruct
, llama_3_405b_instruct
, llama_3_11b_vision
, llama_3_90b_vision
, command_r
, openchat_8b
, claude_3_haiku
, claude_3_sonnet
, claude_3_opus
, firellava_13b
, mistral_7b_instruct
, mixtral_8x7b
, mixtral_8x22b
, mistral_large
, dolphin_mixtral_8x7b
, mythomax_l2_13b
, wizardlm_2
, phi_3_medium
, phi_3_mini
, nemotron_4_340b
, deepseek_coder
, sabia_3
, grok_2
, perplexity_llama_8b_online
, perplexity_llama_70b_online
The maximum number of tokens to generate in the chat completion.
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both.
Agent system prompt
Agent user prompt
(DEPRECATED in favor of systemPrompt and userPrompt) Set the prompt type for this query
raw
, customer_support
(DEPRECATED in favor of systemPrompt and userPrompt) Set the prompt template for this query
Response
The answer of the agent.
ID of the conversation
ID of the participant that's sending the query
Was this page helpful?